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ABSTRACT
Let p be a prime number, G a pro-p group, and H a closed (topologically) finitely
generated subgroup of G. We give conditions under which H is virtually a free fac-
tor of G, i.e., that there exists an open subgroup U of G such that U is the free
pro-p product of H and some other subgroup of U. We prove that this happens
if either G is a free pro-p group of any rank, or if G is a free pro-p product of
finitely generated pro-p groups.

A la memoria de José Luis Rubio de Francia y de Pere Menal

1. Introduction

Marshall Hall proved in [4] that if F is a free abstract group and H a finitely
generated subgroup of F, then any basis of the free group H can be extended to
a basis of some subgroup N of finite index in F. In other words, N = H * K, for
some subgroup K of N, where H * K denotes the free product of H and K. Using
the terminology of [1], we say that a group G is an M. Hall group if whenever H
is a finitely generated subgroup of G, there exists some subgroup N of finite in-
dex in G such that N contains H and N = H * K, for some subgroup K of G. R.
Burns extended the result of Hall to prove that the free product of two M. Hall
groups is an M. Hall group (cf. [2]).

In this paper we consider the M. Hall property in the context of pro-p groups.
First we study free pro-p groups in connection with that property, and we prove
that every (topologically) finitely generated closed subgroup H of a free pro-p
group F of arbitrary rank is a free factor of some open subgroup of F, i.e., there
is an open subgroup U of F such that U = H II K, where K is a closed subgroup
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of U, and II denotes the free pro-p product of pro-p groups, i.e., the coproduct
in the category of pro-p groups (see Corollary 3.5). This extends a result of A. Lu-
botzky (cf. [9], Th. 3.2), who proved this for free pro-p groups of finite rank.

Our main result (Theorem 4.5) deals with free pro-p products of pro-p groups,
in connection with the M. Hall property. We prove an analogue for pro-p groups
of the result of Burns mentioned above. Namely, consider (topologically) finitely
generated pro-p groups G; (i = 1,...,n), with the property that for every (topo-
logically) finitely generated subgroup H of G;, there exists an open subgroup U of
G; such that U = H II K, for some closed subgroup K; then we show that their
free pro-p product G, II- - - II G, satisfies the same property. This theorem gener-
alizes a result of W. Herfort and the author (cf. [7]).

2. Notation and preliminaries

We follow the notation of [14] and [11]. Throughout the paper, p denotes a
prime number. A pro-p group G is a projective limit of finite p-groups, over a di-
rected set; or, equivalently, G is a compact, Hausdorff, totally disconnected to-
pological group, whose open subgroups have an index which is a power of p. One
says that a pro-p group G is generated by a subset X if G is the topological clo-
sure of the abstract subgroup of G generated by X. The pro-p group is finitely gen-
erated, if there exists a finite subset X of G that generates G in the above sense.
The Frattini subgroup G* of G is the intersection of all the maximal closed sub-
groups of G. It is easily seen that G/G" is a vector space over the field F, with p
elements. The elements of G* are characterized as the non-generators of G in the
following sense: for a compact subset T of G, one has that T is a subset of G* if
and only if whenever T'U S generates G, so does S. Also G* = G?[G,G], where
G? is the set of p-powers of the elements of G, and [G, G] is the closure of the
commutator subgroup of G. It is easily checked that a homomorphism ¢: G- H
of pro-p groups is surjective if and only if the induced map ¢: G/G* - H/H" is
surjective.

We say that a subset X of pro-p group G converges to 1, if every open subgroup
U of G contains all but finitely many of the elements in X. Let F be a pro-p group
and X a subset of F converging to 1; one says that F'is a free pro-p group on the
set X if the following universal property is satisfied: whenever G is a pro-p group,
and 6 : X — G a map such that 8(X) converges to 1, there exists a unique contin-
uous homomorphism 8 : F— G which extends 8. See [11] or [14] for the basic prop-
erties of free pro-p groups. The free pro-p group on a set consisting of one element
is Z,, (the additive group of p-adic integers).
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Let G,,...,G, be pro-p groups; then, their free pro-p product G is defined to
be their coproduct in the category of pro-p groups and continuous homomor-
phisms; we use the notation G = G, II- - -II G, for such a product. We say that
a closed subgroup H of a pro-p group G is a free factor of G, if there exists a
closed subgroup K of G such that G = H II K. See e.g., [71, [5], [10] for results
on free products, and in particular for a proof of the following structure theorem
that we will use throughout the paper.

THEOREM 2.1. Let G=G, - --1I G, be the free pro-p product of the pro-p
groups G,,...,G,. Let H be a finitely generated closed subgroup of G. Then

H= [U (L[G,-“""f) nH)] I F,
i=1 \ j
where: (a) for each i, the set {«(i, ) | j} is a complete and irredundant set of double
coset representatives of the subgroups G; and H in G; (b) if G;a(i,j)H = G;H,
then a(i,j) = 1; and (c) F is a free pro-p group.

It easily follows from the above statement that F and each of the groups
G N H is finitely generated, and moreover, G*“ N H = 1, for all but a
finite number of the j’s.

Finally, extending the terminology of [1}, we say that a pro-p group group G is
an M. Hall pro-p group if whenever A is a compact subset of G and H is a finitely
generated closed subgroup of G that is disjoint from A, then H is a free factor of
some open subgroup of G disjoint from A. Observe that Theorem 2.1 and an easy
compactness argument imply that in the above definition one may assume that
A=0.

Throughout the paper, unless otherwise explicitly stated, every homomorphism
of pro-p groups is assumed to be continuous, and every subgroup of a pro-p group
is supposed to be closed.

3. Free groups

We begin by stating a version of Lemma 3.1 in [7], which is mildly sharper than
the original, and at the same time corrects an omission there. The proof is essen-
tially the same as in {7], and we omit it.

LemMma 3.1.  Let G be a pro-p group, T a compact subset of G, and H a finitely
generated subgroup of G such that HN\ T = . Then there exists an open normal
subgroup N of G such that
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i) HNNT =,

(ii) d(HN/N) = d(H), where for a pro-p group R, d(R) denotes the minimal
number of generators of R, in a topological sense (cf. §2),

(iii) if G is finitely generated, every minimal set of generators of H can be ex-
tended to a minimal set of generators of HN, and

(iv) (HNY*NH=H". ]

We state the following simple result for easy reference (cf. [5], Lemma 9.3 and
[7], Lemma 3.8).

LeMMA 3.2. Let A =B U C be a free pro-p product of pro-p groups B and C.
Then

(i) B*=BN A* and
(ii) A/4A* = BA*/A* ® CA*/A* = B/B* @ C/C". |

The following result extends Lemma 3.1 in [9].

ProrosiTION 3.3. Let F be a free pro-p group, and let H be a subgroup of F.
Then H is a free factor of Fif and only if HN F* = H*.

ProofF. By Lemma 3.2, if H is a free factor of Fthen HN F* = H*. Con-
versely, assume that H N F* = H*, Then H/H"* is a subspace of the F,-vector
space F/F*, and therefore there exists a (closed) direct complement C of H/H* in
F/F* (cf. [5], Lemma 9.2). Let 7 : F — F/F* be the canonical epimorphism. By
Zorn’s Lemma, there exists a minimal subgroup M of F such that 7 (M) = C. Then
mm:M - C is a Frattini cover (cf. [3], p. 299), i.e., ker(mar) < M?*, and so
M N F* < M*. Therefore M N F* = M*, and hence 7 induces an isomorphism
M/M* = C. Set G=H 11 M. Then G/G* = H/H* ® M/M*, by Lemma 3.2(ii).
The homomorphism « : G — F induced by the inclusions H, M — F is surjective,
since the induced map & : G/G* — F/F* is an isomorphism. Now, « has a right in-
verse 8: F— G, since F is a free group. However, § is also surjective, since the in-
duced map 8 is the inverse of @, and hence surjective. Thus « is an isomorphism.

| ]

COROLLARY 3.4. Let F= F(X) be a restricted free pro-p group on the set X.
Then f,,...,[, € F form part of a basis of F (converging to 1) iff they are
F-linearly independent modulo F*.

Proor. Denote by H the subgroup of F generated by f,. .., f,, and observe
that if either f,,. .., f, is part of a basis of Forif fi,...,f, are F,-linearly inde-
pendent modulo F*, then fi,...,f, is a basis for H. Consider the natural map
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H/H* - F/F*. Notice that f,, ..., f, are linearly independent modulo F* if and
only if this map is an injection, and obviously this happens if and only if H* =
H N F*. By Proposition 3.3 this condition is equivalent to saying that H is a free
factor of F, or equivalently that a basis of H can be extended to a basis of F con-
verging to 1. |

The following corollaries generalize results of A. Lubotzky {(cf. [9]), who proves
them for free groups of finite rank. They can be proved using the arguments in [9],
but we include here a different proof for Corollary 3.5.

CoROLLARY 3.5. Every free pro-p group F is an M. Hall pro-p group.

Proor. Let H be a finitely generated subgroup of F. By Lemma 3.1, there ex-
ists an open subgroup U of F such that H N U* = H*. Since U is a free pro-p
group (cf. [11], Cor. 6.6, p. 236), the result follows from Proposition 3.3. ®

COROLLARY 3.6. Let F be a free pro-p group, and let H be a finitely generated
subgroup of F. If H contains a non-trivial normal subgroup in F, then H has fi-
nite index in F. |

4. Free products of pro-p groups

The next result, which is a generalization of Lemma 3.4 in [7], has been obtained
jointly with M. Jarden.

LeMMA 4.1, Let G=G,1---11 G, be a free pro-p product of pro-p groups,
and let «(1),...,a(n) €EG. Then G =GV 11 - - 11 GZ'™.

Proor. For each open normal subgroup U of G, put G;(U) = G;/G; N U.
Then

G= li;n LiIG,-(U)

(cf. Lemma 4.2 in [7]). Denote by ¢ : G — L;G;(U) the canonicai projection.
Put ¢y (a(i)) = a(i). By Lemma 3.4 in [7], II;G,(U) = I1;G;(U)*""). Hence

1 — 1 (i) — ; i (i) — a(i)
G= 11511 LI_IG,-(U)— h:/n LiIGi(U) —LiI h;n Gi(U) —L’_IG,

(see [10], Prop. 1.6 for an explicit justification of the penultimate equality). W

LEmma 4.2. Let Gy,...,G, be pro-p groups and let G = || G, be their free
pro-p product. Let H be a subgroup of G, and suppose that H admits a decom-
position of the form
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H= [LI (I_IG,’""'” ﬂH)] II F,
i=1 \ j

where o(i,j) € G, for each i, G**/’ N\ H = 1 for almost all j, and F is a free
pro-p group. Foreach i =1,...,nlet S; be any complete and irredundant set of
representatives of the double cosets G\G/H of G with respect to G; and H. Then
Jor each i, GF N\ H =1 for almost all s € S;, and

H=H[H G,—sﬂH] IIF.
i=1 Lses;

PrOOF. Observe first that if j # k, G#*/ N H # 1 and G***¥ N H # 1, then
G;a(i,j)H # G;a(i,k)H. For otherwise there exist g € G; and # € H such that
a(i,j) = ga(i,k)h, and hence GF) N H = (G#»*) N H)*, a contradiction (cf.
Th. 2, [6]). Next if G;«(i,/)H = G;sH, then s = ge: (i, j)h, g € G; and h € H, and
so Gf N H = (GF%% N H)"; therefore, Gf N H = 1 iff G*“¥ N H = 1. Let
Si={s€S;|GiNH=1}. Then

H= [U (flG,-“”’”ﬂH)] OrF=]] [U (GfﬂH)"(s’] I F,

i=1 J i=1 LseSs;

for some A(s) € H. Hence, by Lemma 4.1,

Hzfl[I_IG,-‘ﬂH]HF. n

i=1 Lses;
LemMA 4.3. Subgroups of M. Hall pro-p groups are M. Hall pro-p groups.

ProoF. Let G be an M. Hall pro-p group, H a subgroup of G and X a finitely
generated subgroup of H. By assumption, there exists an open subgroup U of G
containing K with U = K II L, for some subgroup L of U. Let V= UN H. Then
V is open in H. Apply the Kurosh subgroup theorem (cf. [5] or [10]) to V as a sub-
group of the free product U = K II L, to get the desired result. |

LeMMA 4.4.  Consider pro-p groups H< B < A such that H and B are finitely
generated, and HN B* = HN A* = H*. Assume that B= Ry, II R, I F, and
H =Ry 11 F, where F and F, are free pro-p groups. If RyA* < RyA*, then H is
a free factor of B.

Proor. By assumption H/H" is an F,-subspace of B/B*. We claim that the
subspaces FB*/B* and (R, II R,)B*/B* of B/B* have trivial intersection. For
let f€ F\B*and r € (Ry II R;)\B* be such that fr € B* < A* Since R|A* =<
RoA*, r=rys, where s€ A* and ro € Ry. So fro € HN A* = H*. However, since
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H =R, 1I F, it follows from Lemma 3.2 that f€ H* < B*, a contradiction. This
proves the claim. Let x,,...,x;, € Rs I Ry, and f,,...,f, € F be such that
x,B*,...,x,B* and f,B*, ..., f,B* form bases for the subspaces (R II R,)B*/B*
and FB*/B* of B/B*, respectively. Note that f1,...,f, form a basis for F, since
FB*/B*~F/FNB*=FFNHNB*=FFNH*=F/F* Lety,,...,y,€Bbe
such that x,B*,...,x,B*, f;B*,...,f,B*, y1B*,...,y,B* constitute a basis for
B/B*. Consider the subgroup S of B generated by fi,...,f;, Y1,...,Vu. By
Lemma 3.2, rank F; = ¢ + u. Define an epimorphism ¢ from B onto B that sends
R, II R, to Ry II R, identically, and sends F, onto S. Then ¢ is an isomorphism
(cf. Prop. 7.6, p. 68 in [11]). It follows that F; = Sand B=R, I R, Il § =
RyIIR IIFIU(y,...., ,>)=HUR; O {yy,...,»), as desired. ]

THEOREM 4.5. The free pro-p product of finitely many finitely generated
M. Hall pro-p groups is an M. Hall pro-p group.

Before we prove the theorem, we will state a consequence of it that extends
Lemma 3.3 in [7].

COROLLARY 4.6. Let G= G, 11---11 G, be a free pro-p product where each G;
is either a finite p-group or isomorphic to Z,. Then every finitely generated sub-
group H of G is a free factor of some open subgroup of G.

PRrOOF OF THE THEOREM. Let G = G, II---1I G, be a free pro-p product of
finitely generated M. Hall pro-p groups G;, and let H be a finitely generated sub-
group of G. We shall show that H is a free factor of some open subgroup of G.
By Theorem 2.1

H= [H (I_IG,-“”’” nH)] II F,
i=1 J

where the «(i,j)’s are in G and form a complete and irredundant set of double
coset representatives of G; and H in G, and F is a free pro-p group; moreover
G H = 1 for almost all j’s (say G#*/ N H # 1 if and only if j =
1,...,r(i)), and F is a free pro-p group of finite rank. Let N be an open normal
subgroup of G such that foreachi=1,...,n, and 1 <j,k < r(i), G;a(i,j)HN #
G;a(i,k)HN. Since HN is an open subgroup of G, there are only finitely many
double cosets of G; and HN in G. It follows then from Theorem 2.1 applied to
HN, and Lemma 4.2, that

=N

(i) .
( 11 GF“* n HN)] 1 F(N),

k=1

n r(i)
(x) HN= []_I (LI Gf'“'”ﬂHN)] I [

i=1 \ j=1 1

[
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where 8(i, j) € G, {a(i,/),B(i, k) |j=1,...,r(i), k=1,...,1(i)} are represen-
tatives of disjoint double cosets of G, and HN in G, and F(N) is a free pro-p
group of finite rank. Using Lemma 3.1, we choose N to be such that, in addition,
(HNY*NH=H".

By Lemma 4.3, the finitely generated group G#“) N H is a free factor of an
open subgroup Uy of G#*? N HN; say Uy = (GF) N H) 1 T;;. We claim
that if one chooses N small enough, then G#“/) N H is in fact a free factor of
G N HN itself. For choose an open normal subgroup S of G with S < N such
that

(GF*)"NHN)NHS =G’ NHS< U; for eachiand j;

then apply Theorem 2.1 again to HS as a subgroup of the above free product
decomposition (*), and then to G**/) N HS as a subgroup of the free product
U, = (GF*) N H) 1 Ty, to see that GF*) N H is a free factor of G*“/) N HS;
finally substitute N by S, proving the claim. Then we can rewrite AN as

nofrii 1
HN = [U ( I(j) (Gr) N H) 1T T,-,.) ( fj) GO n HN)] II F(N).
i=1 \ j=1 k=1

Observe that since HN is finitely generated, so is each T, and G*"* N HN.
Therefore, the Frattini subgroups (7};)* and (G,»B("’k) N HN)* are open subgroups
of T;; and GF®® N HN respectively. On the other hand, HN T, =1 = HN
GF“® N HN, foralli=1,...,n,j=1,...,r(i),and k = 1,...,t(i). Therefore,
there exists an open normal subgroup M of G with M < N and such that HM N
T; < T and HM 0GP N HN = GP“" N HM < (GF"Y N HN)*. Apply
again Theorem 2.1 to HM as a subgroup of the above free product decomposition
of HN, to get

n r(’) ; .. P
HM = {U [ U (LI (GO N HY 0 0 HM) I (U AR HM)

i=1 Lj=1 \ u v

(i
I ( ff [1(G/“% N HNyeka HM)H I F,
k=1 z

where F; is a free pro-p group, 6(i, j,u),v(i,k,v),e(i, k,z) are representatives of
the double cosets of G*“”’ N HN and HM in HN, of T;; and HM in HN, and of
G,ﬁ %' HN and HM in HN, respectively; moreover, as usual, we take 1 to be
the representative of the double cosets that contain 1, so that for each i, j,
G N H is a factor appearing in the above decomposition of HM. Since N was
chosen so that (HN)Y* N H = H*, we also have (HM)* N H=H*, and so H/H*
is an F,-subspace of HM/(HM)*. Set



Vol. 74, 1991 FREE FACTORS OF PRO-p GROUPS 345

Ro= |11 (1 6% n )|,
o= [ (T orer o)

i=1 \j=1

Then H= Ry II F, and HM = R, II R, 11 F;, where

Ry IR, =] [U (U (GG) N H)I HM) I (U T3 N HM)
v

i=1 J u

I (U [ (GFY 0 HNy Gk HM)] :
k z

Observe that (G2 N H)*/ N HM = G N H, modulo (HN)*; T}’ N
HM = T; N HM = 1, modulo (HN)*; and that ((GF***' N HN)<"-%9 N HM) =
GPY n HM = 1, modulo (HN)*. Hence the conditions of Lemma 4.4 are sat-
isfied, where HN and HM play the r6les of 4 and B respectively. Therefore, H is
a free factor of HM as desired. [ ]

5. Final remarks

Before we state the next result, we recall the concept of free product of two
groups amalgamating a common subgroup in the context of pro-p groups (see [12]
for details). Let A and B be pro-p groups with a common subgroup C. Consider
the push-out diagram

C-— A4

|

B— G

in the category of pro-p groups. One says that G is the free product of 4 and B
amalgamating C, and we write G = A4 I B, if the canonical maps A — G and
B — G are monomorphisms. It turns out that if A and B are finite p-groups (or,
more generally, countably generated pro-p groups) then G = A lI- Biff A #- B
(the free product with amalgamation, as abstract groups) is a residually finite
p-group; and in fact, then G is the pro-p completion of 4 *~ B (cf. Th. 3.1 in [12]).

ProposiTioN 5.1. Let A and B be finite p-groups with a common subgroup
C # 1, and A # C + B. Assume that the free product of A and B amalgamating
C, G = A 1~ B exists. Then G contains finitely generated subgroups that are not
free factors of any open subgroup of G.

Proor. Suppose not. Choose subgroups A" and B’ of A and B respectively
suchthat C< A4, C< B, (A':C)=pand (B’:C) = p. Then C is a normal sub-
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group of both A’ and B’. Let G’ = (A’, B’) be the subgroup of G generated by A’
and B'. Then C > G'. By Lemma 4.3, C is a free factor of an open subgroup U of
G'. Say U= C 1I C'. Now by Lemma 2 in [13], the abstract subgroup H generated
by A’ and B’ is the free product with amalgamation H = A’ *- B’. Note (U:C) =,
since U is open in G’ and (G':C) = (H:C) = . Therefore, C’ # 1, and since
C > U, we have that C’ normalizes C. However, by Th. 2 in [6], the only elements
of U normalizing C are those of C. This contradiction implies the result. |

CoNJECTURE 5.2. The only finitely generated M. Hall pro-p groups indecom-
posable with respect to free pro-p products are either finite p-groups or Z,,.

CoNIECTURE 5.3. Theorem 4.5 is valid even if the free factors are not neces-
sarily finitely generated.
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