VIRTUALLY FREE FACTORS OF PRO-p GROUPS

BY

LUIS RIBES⁺

Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario KIS SB6, Canada; and Departamento de Matemdticas, Universidad Aut6noma, 28049 Madrid, Spain

ABSTRACT

Let p be a prime number, G a pro- p group, and H a closed (topologically) finitely generated **subgroup of** G. We give conditions under which H is virtually a free **factor of G, i.e., that** there exists an open **subgroup U of G such that U is the free** pro-p product of H and some other subgroup of U . We prove that this happens if either G is a free pro-p group of any rank, or if G is a free pro-p product **of** finitely generated pro-p groups.

A la memoria de José Luis Rubio de Francia y de Pere Menal

1. Introduction

Marshall Hall proved in [4] that if F is a free abstract group and H a finitely generated subgroup of F , then any basis of the free group H can be extended to a basis of some subgroup N of finite index in F. In other words, $N = H \cdot K$, for some subgroup K of N, where $H * K$ denotes the free product of H and K. Using the terminology of [1], we say that a group G is an M. Hall group if whenever H is a finitely generated subgroup of G , there exists some subgroup N of finite index in G such that N contains H and $N = H \ast K$, for some subgroup K of G. R. Burns extended the result of Hall to prove that the free product of two M. Hall groups is an M. Hall group (cf. [2]).

In this paper we consider the M. Hall property in the context of pro-p groups. First we study free pro-p groups in connection with that property, and we prove that every (topologically) finitely generated closed subgroup H of a free pro- p group F of arbitrary rank is a free factor of some open subgroup of F , i.e., there is an open subgroup U of F such that $U = H \amalg K$, where K is a closed subgroup

tResearch supported in part by grants from NSERC (Canada) and DGICYT (Spain). Received May 31, 1990

of U , and Π denotes the free pro-p product of pro-p groups, i.e., the coproduct in the category of pro-p groups (see Corollary 3.5). This extends a result of A. Lubotzky (cf. [9], Th. 3.2), who proved this for free pro-p groups of finite rank.

Our main result (Theorem 4.5) deals with free pro-p products of pro-p groups, in connection with the M. Hall property. We prove an analogue for pro- p groups of the result of Burns mentioned above. Namely, consider (topologically) finitely generated pro-p groups G_i ($i = 1, ..., n$), with the property that for every (topologically) finitely generated subgroup H of G_i , there exists an open subgroup U of G_i such that $U = H \amalg K$, for some closed subgroup K; then we show that their free pro-p product $G_1 \amalg \cdots \amalg G_n$ satisfies the same property. This theorem generalizes a result of W. Herfort and the author (cf. [7]).

2. Notation and preliminaries

We follow the notation of $[14]$ and $[11]$. Throughout the paper, p denotes a prime number. A pro-p group G is a projective limit of finite p-groups, over a directed set; or, equivalently, G is a compact, Hausdorff, totally disconnected topological group, whose open subgroups have an index which is a power of p . One says that a pro-p group G is generated by a subset X if G is the topological closure of the abstract subgroup of G generated by X. The pro-p group is *finitely generated,* if there exists a finite subset X of G that generates G in the above sense. The *Frattini subgroup G** of G is the intersection of all the maximal closed subgroups of G. It is easily seen that G/G^* is a vector space over the field \mathbf{F}_p with p elements. The elements of G^* are characterized as the non-generators of G in the following sense: for a compact subset T of G, one has that T is a subset of G^* if and only if whenever $T \cup S$ generates G, so does S. Also $G^* = G^p[G, G]$, where G^p is the set of p-powers of the elements of G, and $[G,G]$ is the closure of the commutator subgroup of G. It is easily checked that a homomorphism $\varphi : G \to H$ of pro-p groups is surjective if and only if the induced map $\varphi : G/G^* \to H/H^*$ is surjective.

We say that a subset X of pro-p group *G converges to* 1, if every open subgroup U of G contains all but finitely many of the elements in X. Let F be a pro-p group and X a subset of F converging to 1; one says that F is *a free pro-p group* on the set X if the following universal property is satisfied: whenever G is a pro-p group, and θ : $X \rightarrow G$ a map such that $\theta(X)$ converges to 1, there exists a unique continuous homomorphism $\bar{\theta}: F \to G$ which extends θ . See [11] or [14] for the basic properties of free pro- p groups. The free pro- p group on a set consisting of one element is \mathbb{Z}_p (the additive group of p-adic integers).

Let G_1, \ldots, G_n be pro-p groups; then, their free pro-p product G is defined to be their coproduct in the category of pro- p groups and continuous homomorphisms; we use the notation $G = G_1 \amalg \cdots \amalg G_n$ for such a product. We say that a closed subgroup H of a pro-p group G is a *free factor* of G, if there exists a closed subgroup K of G such that $G = H \amalg K$. See e.g., [7], [5], [10] for results on free products, and in particular for a proof of the following structure theorem that we will use throughout the paper.

THEOREM 2.1. *Let* $G = G_1 \amalg \cdots \amalg G_n$ be the free pro-p product of the pro-p *groups* G_1, \ldots, G_n . Let H be a finitely generated closed subgroup of G. Then

$$
H = \left[\prod_{i=1}^n \left(\coprod_j G_i^{\alpha(i,j)} \cap H \right) \right] \amalg F,
$$

where: (a) for each i, the set $\{\alpha(i, j) | j\}$ *is a complete and irredundant set of double coset representatives of the subgroups G_i and H in G; (b) if* $G_i \alpha(i,j)H = G_iH$ *, then* $\alpha(i, j) = 1$; *and* (c) *F* is a free pro-p group.

It easily follows from the above statement that F and each of the groups $G_i^{\alpha(i,j)} \cap H$ is finitely generated, and moreover, $G_i^{\alpha(i,j)} \cap H = 1$, for all but a finite number of the *j's.*

Finally, extending the terminology of [1], we say that a pro-p group group G is an *M. Hall pro-p group* if whenever A is a compact subset of G and H is a finitely generated closed subgroup of G that is disjoint from A , then H is a free factor of some open subgroup of G disjoint from A. Observe that Theorem 2.1 and an easy compactness argument imply that in the above definition one may assume that $A=\varnothing$.

Throughout the paper, unless otherwise explicitly stated, every homomorphism of pro-p groups is assumed to be continuous, and every subgroup of a pro-p group is supposed to be closed.

3. Free groups

We begin by stating a version of Lemma 3.1 in [7], which is mildly sharper than the original, and at the same time corrects an omission there. The proof is essentially the same as in [7], and we omit it.

LEMMA 3.1. Let G be a pro-p group, T a compact subset of G, and H a finitely *generated subgroup of G such that* $H \cap T = \emptyset$. Then there exists an open normal *subgroup N of G such that*

(i) $HN \cap T = \emptyset$,

(ii) $d(HN/N) = d(H)$, where for a pro-p group R, $d(R)$ denotes the minimal *number of generators of R, in a topological sense* (cf. §2),

(iii) *if G is finitely generated, every minimal set of generators of H can be extended to a minimal set of generators of HN, and*

(iv) $(HN)^* \cap H = H^*$.

We state the following simple result for easy reference (cf. [5], Lemma 9.3 and [7], Lemma 3.8).

LEMMA 3.2. *Let* $A = B \amalg C$ *be a free pro-p product of pro-p groups B and C. Then*

(i) *B* = B O A*, and*

(ii) $A/A^* = BA^* / A^* \oplus CA^* / A^* \approx B / B^* \oplus C / C^*$.

The following result extends Lemma 3.1 in [9].

PROPOSITION 3.3. Let F be a free pro-p group, and let H be a subgroup of F. *Then H is a free factor of F if and only if* $H \cap F^* = H^*$ *.*

PROOF. By Lemma 3.2, if H is a free factor of F then $H \cap F^* = H^*$. Conversely, assume that $H \cap F^* = H^*$. Then H/H^* is a subspace of the \mathbf{F}_p -vector space *F/F*,* and therefore there exists a (closed) direct complement C of *H/H** in *F/F^{*}* (cf. [5], Lemma 9.2). Let $\pi: F \to F/F^*$ be the canonical epimorphism. By Zorn's Lemma, there exists a minimal subgroup M of F such that $\pi(M) = C$. Then $\pi_{|M}: M \to C$ is a Frattini cover (cf. [3], p. 299), i.e., ker($\pi_{|M}| < M^*$, and so $M \cap F^* < M^*$. Therefore $M \cap F^* = M^*$, and hence π induces an isomorphism $M/M^* \approx C$. Set $G = H \amalg M$. Then $G/G^* \approx H/H^* \oplus M/M^*$, by Lemma 3.2(ii). The homomorphism α : $G \rightarrow F$ induced by the inclusions $H, M \rightarrow F$ is surjective, since the induced map $\bar{\alpha}: G/G^* \to F/F^*$ is an isomorphism. Now, α has a right inverse $\beta : F \to G$, since F is a free group. However, β is also surjective, since the induced map $\bar{\beta}$ is the inverse of $\bar{\alpha}$, and hence surjective. Thus α is an isomorphism.

COROLLARY 3.4. Let $F = F(X)$ be a restricted free pro-p group on the set X. *Then* $f_1, \ldots, f_n \in F$ form part of a basis of F (converging to 1) iff they are *Fp-linearly independent modulo F*.*

PROOF. Denote by H the subgroup of F generated by f_1, \ldots, f_n , and observe that if either f_1, \ldots, f_n is part of a basis of F or if f_1, \ldots, f_n are \mathbf{F}_p -linearly independent modulo F^* , then f_1, \ldots, f_n is a basis for H. Consider the natural map

▅

 $H/H^* \rightarrow F/F^*$. Notice that f_1,\ldots, f_n are linearly independent modulo F^* if and only if this map is an injection, and obviously this happens if and only if H^* = $H \cap F^*$. By Proposition 3.3 this condition is equivalent to saying that H is a free factor of F, or equivalently that a basis of H can be extended to a basis of F converging to 1.

The following corollaries generalize results of A. Lubotzky (cf. [9]), who proves them for free groups of finite rank. They can be proved using the arguments in [9], but we include here a different proof for Corollary 3.5.

COROLLARY 3.5. *Every free pro-p group F is an M. Hall pro-p group.*

PROOF. Let H be a finitely generated subgroup of F. By Lemma 3.1, there exists an open subgroup U of F such that $H \cap U^* = H^*$. Since U is a free pro-p group (cf. [ll], Cor. 6.6, p. 236), the result follows from Proposition 3.3. •

COROLLARY *3.6. Let F be a free pro-p group, and let H be a finitely generated subgroup ofF. If H contains a non-trivial normal subgroup in F, then H has finite index in F. •*

4. Free products of pro-p groups

The next result, which is a generalization of Lemma 3.4 in [7], has been obtained jointly with M. Jarden.

LEMMA 4.1. Let $G = G_1 \amalg \cdots \amalg G_n$ be a free pro-p product of pro-p groups, *and let* α (1), ..., α (n) \in *G. Then* $G = G_1^{\alpha(1)} \amalg \cdots \amalg G_n^{\alpha(n)}$.

PROOF. For each open normal subgroup U of G, put $G_i(U) = G_i/G_i \cap U$. Then

$$
G = \varprojlim_{U} \coprod_{i} G_{i}(U)
$$

(cf. Lemma 4.2 in [7]). Denote by $\varphi_U: G \to \Pi_i G_i(U)$ the canonical projection. Put $\varphi_U(\alpha(i)) = \overline{\alpha(i)}$. By Lemma 3.4 in [7], $\prod_i G_i(U) = \prod_i G_i(U)^{\overline{\alpha(i)}}$. Hence

$$
G = \varprojlim_{U} \coprod_{i} G_{i}(U) = \varprojlim_{U} \coprod_{i} G_{i}(U)^{\overline{\alpha(i)}} = \coprod_{i} \varprojlim_{U} G_{i}(U)^{\alpha(i)} = \coprod_{i} G_{i}^{\alpha(i)}
$$

(see [10], Prop. 1.6 for an explicit justification of the penultimate equality). \blacksquare

LEMMA 4.2. Let G_1, \ldots, G_n be pro-p groups and let $G = \coprod G_i$ be their free *pro-p product. Let H be a subgroup of G, and suppose that H admits a decomposition of the form*

$$
H = \left[\prod_{i=1}^n \left(\coprod_j G_i^{\alpha(i,j)} \cap H \right) \right] \amalg F,
$$

where $\alpha(i,j) \in G$, for each i, $G_i^{\alpha(i,j)} \cap H = 1$ for almost all j, and F is a free *pro-p group. For each i = 1,..., n let* S_i *be any complete and irredundant set of representatives of the double cosets* $G_i\ G/H$ *of G with respect to* G_i *and H. Then for each i,* $G_i^s \cap H = 1$ *for almost all s* $\in S_i$ *, and*

$$
H = \coprod_{i=1}^{n} \left[\coprod_{s \in S_i} G_i^s \cap H \right] \amalg F.
$$

PROOF. Observe first that if $j \neq k$, $G_i^{\alpha(i,j)} \cap H \neq 1$ and $G_i^{\alpha(i,k)} \cap H \neq 1$, then $G_i\alpha(i,j)H \neq G_i\alpha(i,k)H$. For otherwise there exist $g \in G_i$ and $h \in H$ such that $\alpha(i,j) = g\alpha(i,k)h$, and hence $G_i^{\alpha(i,j)} \cap H = (G_i^{\alpha(i,k)} \cap H)^h$, a contradiction (cf. Th. 2, [6]). Next if $G_i\alpha(i,j)H = G_i sH$, then $s = g\alpha(i,j)h$, $g \in G_i$ and $h \in H$, and so $G_i^s \cap H = (G_i^{\alpha(i,k)} \cap H)^h$; therefore, $G_i^s \cap H = 1$ iff $G_i^{\alpha(i,k)} \cap H = 1$. Let $\bar{S}_i = \{s \in S_i \mid G_i^s \cap H \neq 1\}$. Then

$$
H = \left[\coprod_{i=1} \left(\coprod_{j}^{n} G_{i}^{\alpha(i,j)} \cap H \right)\right] \amalg F = \coprod_{i=1} \left[\coprod_{s \in \bar{S}_{i}} (G_{i}^{s} \cap H)^{h(s)}\right] \amalg F,
$$

for some $h(s) \in H$. Hence, by Lemma 4.1,

$$
H = \coprod_{i=1}^{n} \left[\coprod_{s \in S_i} G_i^s \cap H \right] \amalg F.
$$

LEMMA 4.3. *Subgroups of M. Hall pro-p groups are M. Hall pro-p groups.*

PROOF. Let G be an M. Hall pro-p group, H a subgroup of G and K a finitely generated subgroup of H. By assumption, there exists an open subgroup U of G containing K with $U = K \amalg L$, for some subgroup L of U. Let $V = U \cap H$. Then V is open in H. Apply the Kurosh subgroup theorem (cf. [5] or [10]) to V as a subgroup of the free product $U = K \amalg L$, to get the desired result.

LEMMA 4.4. *Consider pro-p groups* $H \leq B \leq A$ *such that H and B are finitely* generated, and $H \cap B^* = H \cap A^* = H^*$. Assume that $B = R_0 \amalg R_1 \amalg F_1$ and $H = R_0$ II F, where F and F_1 are free pro-p groups. If $R_1A^* \leq R_0A^*$, then H is *a free factor of B.*

PROOF. By assumption H/H^* is an \mathbf{F}_p -subspace of B/B^* . We claim that the subspaces FB^*/B^* and $(R_0 \amalg R_1)B^*/B^*$ of B/B^* have trivial intersection. For let $f \in F \backslash B^*$ and $r \in (R_0 \amalg R_1) \backslash B^*$ be such that $fr \in B^* \leq A^*$. Since $R_1 A^* \leq$ R_0A^* , $r = r_0s$, where $s \in A^*$ and $r_0 \in R_0$. So $fr_0 \in H \cap A^* = H^*$. However, since $H = R_0$ II F, it follows from Lemma 3.2 that $f \in H^* \leq B^*$, a contradiction. This proves the claim. Let $x_1, \ldots, x_s \in R_0$ II R_1 , and $f_1, \ldots, f_t \in F$ be such that x_1B^*, \ldots, x_sB^* , and f_1B^*, \ldots, f_tB^* form bases for the subspaces $(R_0 II R_1)B^*/B^*$ and FB^*/B^* of B/B^* , respectively. Note that f_1, \ldots, f_t form a basis for F, since $FB^*/B^* \approx F/F \cap B^* = F/F \cap H \cap B^* = F/F \cap H^* \approx F/F^*$. Let $y_1, \ldots, y_u \in B$ be such that $x_1B^*, \ldots, x_sB^*, f_1B^*, \ldots, f_tB^*, y_1B^*, \ldots, y_uB^*$ constitute a basis for B/B^* . Consider the subgroup S of B generated by $f_1, \ldots, f_t, y_1, \ldots, y_u$. By Lemma 3.2, rank $F_1 = t + u$. Define an epimorphism φ from B onto B that sends R_0 II R_1 to R_0 II R_1 identically, and sends F_1 onto S. Then φ is an isomorphism (cf. Prop. 7.6, p. 68 in [11]). It follows that $F_1 \approx S$ and $B = R_0$ II R_1 II $S =$ R_0 II R_1 II F II $\langle y_1, \ldots, y_u \rangle = H$ II R_1 II $\langle y_1, \ldots, y_u \rangle$, as desired.

THEOREM 4.5. *The free pro-p product of finitely many finitely generated M. Hall pro-p groups is an M. Hall pro-p group.*

Before we prove the theorem, we will state a consequence of it that extends Lemma 3.3 in [7].

COROLLARY 4.6. Let $G = G_1 \amalg \cdots \amalg G_n$ be a free pro-p product where each G_i is either a finite p-group or isomorphic to \mathbb{Z}_p . Then every finitely generated sub*group H of G is a free factor of some open subgroup of G.*

PROOF OF THE THEOREM. Let $G = G_1 \amalg \cdots \amalg G_n$ be a free pro-p product of finitely generated M. Hall pro-p groups G_i , and let H be a finitely generated subgroup of G . We shall show that H is a free factor of some open subgroup of G . By Theorem 2.1

$$
H = \left[\prod_{i=1}^n \left(\coprod_j G_i^{\alpha(i,j)} \cap H \right) \right] \amalg F,
$$

where the $\alpha(i,j)$'s are in G and form a complete and irredundant set of double coset representatives of G_i and H in G , and F is a free pro- p group; moreover $G_i^{\alpha(i,j)} \cap H = 1$ for almost all *j*'s (say $G_i^{\alpha(i,j)} \cap H \neq 1$ if and only if $j =$ $1, \ldots, r(i)$, and F is a free pro-p group of finite rank. Let N be an open normal subgroup of G such that for each $i = 1, \ldots, n$, and $1 \le j, k \le r(i)$, $G_i \alpha(i,j)HN \ne j$ $G_i \alpha(i, k)$ *HN*. Since *HN* is an open subgroup of G, there are only finitely many double cosets of G_i and HN in G . It follows then from Theorem 2.1 applied to *HN,* and Lemma 4.2, that

$$
(*)\quad HN=\left[\coprod_{i=1}^n\left(\coprod_{j=1}^{r(i)}G_i^{\alpha(i,j)}\cap HN\right)\right]\amalg\left[\coprod_{i=1}^n\left(\coprod_{k=1}^{t(i)}G_i^{\beta(i,k)}\cap HN\right)\right]\amalg F(N),
$$

where $\beta(i,j) \in G$, $\{\alpha(i,j),\beta(i,k) \mid j = 1,\ldots,r(i), k = 1,\ldots,t(i)\}$ are representatives of disjoint double cosets of G_i and HN in G , and $F(N)$ is a free pro-p group of finite rank. Using Lemma 3.1, we choose N to be such that, in addition, $(HN)^* \cap H = H^*$.

By Lemma 4.3, the finitely generated group $G_i^{\alpha(i,j)} \cap H$ is a free factor of an open subgroup U_{ii} of $G_i^{\alpha(i,j)} \cap HN$; say $U_{ii} = (G_i^{\alpha(i,j)} \cap H)$ II T_{ij} . We claim that if one chooses N small enough, then $G_i^{\alpha(i,j)} \cap H$ is in fact a free factor of $G_i^{\alpha(i,j)} \cap HN$ itself. For choose an open normal subgroup S of G with $S \le N$ such that

$$
(G_i^{\alpha(i,j)} \cap HN) \cap HS = G_i^{\alpha(i,j)} \cap HS \le U_{ij} \qquad \text{for each } i \text{ and } j;
$$

then apply Theorem 2.1 again to *HS* as a subgroup of the above free product decomposition (*), and then to $G_i^{\alpha(i,j)} \cap HS$ as a subgroup of the free product $U_{ii} = (G_i^{\alpha(i,j)} \cap H)$ II T_{ii} , to see that $G_i^{\alpha(i,j)} \cap H$ is a free factor of $G_i^{\alpha(i,j)} \cap HS$; finally substitute N by S, proving the claim. Then we can rewrite *HN* as

$$
HN = \left[\coprod_{i=1}^n \left(\coprod_{j=1}^{r(i)} (G_i^{\alpha(i,j)} \cap H) \amalg T_{ij}\right) \left(\coprod_{k=1}^{t(i)} G_i^{\beta(i,k)} \cap HN\right)\right] \amalg F(N).
$$

Observe that since *HN* is finitely generated, so is each T_{ij} and $G_i^{\beta(i,k)} \cap HN$. Therefore, the Frattini subgroups $(T_{ij})^*$ and $(G_i^{\beta(i,k)} \cap HN)^*$ are open subgroups of T_{ii} and $G_i^{\beta(i,k)} \cap HN$ respectively. On the other hand, $H \cap T_{ij} = 1 = H \cap$ $G_i^{\beta(i,k)} \cap HN$, for all $i = 1, \ldots, n, j = 1, \ldots, r(i)$, and $k = 1, \ldots, t(i)$. Therefore, there exists an open normal subgroup M of G with $M \le N$ and such that $HM \cap$ $T_{ij} \leq T_{ij}^*$ and $HM \cap G_i^{\beta(i,k)} \cap HN = G_i^{\beta(i,k)} \cap HM \leq (G_i^{\beta(i,k)} \cap HN)^*$. Apply again Theorem 2.1 to *HM* as a subgroup of the above free product decomposition of *HN,* to get

$$
HM = \left\{ \coprod_{i=1}^{n} \left[\coprod_{j=1}^{r(i)} \left(\coprod_{u} (G_i^{\alpha(i,j)} \cap H)^{\delta(i,j,u)} \cap HM \right) \amalg \left(\coprod_{v} T_j^{\gamma(i,j,v)} \cap HM \right) \right\}
$$

$$
\amalg \left(\coprod_{k=1}^{t(i)} \coprod_{z} (G_i^{\beta(i,k)} \cap HN)^{\epsilon(i,k,z)} \cap HM \right) \right\} \amalg F_1,
$$

where F_1 is a free pro-p group, $\delta(i, j, u)$, $\gamma(i, k, v)$, $\epsilon(i, k, z)$ are representatives of the double cosets of $G_i^{\alpha(i,j)} \cap HN$ and *HM* in *HN*, of T_{ij} and *HM* in *HN*, and of $G_i^{\beta(i,k)} \cap HN$ and *HM* in *HN*, respectively; moreover, as usual, we take 1 to be the representative of the double cosets that contain 1, so that for each *i,j,* $G_1^{\alpha(i,j)} \cap H$ is a factor appearing in the above decomposition of *HM*. Since N was chosen so that $(HN)^* \cap H = H^*$, we also have $(HM)^* \cap H = H^*$, and so H/H^* is an \mathbf{F}_p -subspace of $HM/(HM)^*$. Set

$$
R_0=\left[\coprod_{i=1}^n\left(\coprod_{j=1}^{r(i)}G_i^{\alpha(i,j)}\cap H\right)\right].
$$

Then $H = R_0$ II F, and $HM = R_0$ II R_1 II F_1 , where

$$
R_0 \amalg R_1 = \coprod_{i=1}^n \left[\coprod_j \left(\coprod_u (G_i^{\alpha(i,j)} \cap H)^{\delta(i,j,u)} \cap HM \right) \amalg \left(\coprod_v T_j^{\gamma(i,j,v)} \cap HM \right) \right]
$$

$$
\amalg \left(\coprod_k \coprod_u (G_i^{\beta(i,k)} \cap HN)^{\epsilon(i,k,z)} \cap HM \right) \right].
$$

Observe that $(G_i^{\alpha(i,j)} \cap H)^{\delta(i,j,u)} \cap HM \equiv G_i^{\alpha(i,j)} \cap H$, modulo $(HN)^*$; $T_{ij}^{\gamma(i,j,v)} \cap H$ $HM \equiv T_{ij} \cap HM \equiv 1$, modulo $(HN)^{*}$; and that $((G_i^{\beta(i,k)} \cap HN)^{\epsilon(i,k,z)} \cap HM)$ $G_i^{\beta(i,k)} \cap HM = 1$, modulo $(HN)^*$. Hence the conditions of Lemma 4.4 are satisfied, where HN and HM play the rôles of A and B respectively. Therefore, H is a free factor of *HM* as desired. •

5. Final remarks

Before we state the next result, we recall the concept of free product of two groups amalgamating a common subgroup in the context of pro-p groups (see [12] for details). Let A and B be pro-p groups with a common subgroup C. Consider the push-out diagram

in the category of pro-p groups. One says that G is the free product of A and B amalgamating C, and we write $G = A \amalg_C B$, if the canonical maps $A \rightarrow G$ and $B \rightarrow G$ are monomorphisms. It turns out that if A and B are finite p-groups (or, more generally, countably generated pro-p groups) then $G = A \amalg_C B$ iff $A *_{C} B$ (the free product with amalgamation, as abstract groups) is a residually finite *p*-group; and in fact, then G is the pro-p completion of $A *_{C} B$ (cf. Th. 3.1 in [12]).

PROPOSITION 5.1. *Let A and B be finite p-groups with a common subgroup* $C \neq 1$, and $A \neq C \neq B$. Assume that the free product of A and B amalgamating $C, G = A \amalg_C B$ exists. Then G contains finitely generated subgroups that are not *free factors of any open subgroup of G.*

PROOF. Suppose not. Choose subgroups A' and B' of A and B respectively such that $C < A'$, $C < B'$, $(A':C) = p$ and $(B':C) = p$. Then C is a normal sub**group of both A' and B'. Let** $G' = \langle A, B' \rangle$ **be the subgroup of G generated by A'** and B'. Then $C \triangleright G'$. By Lemma 4.3, C is a free factor of an open subgroup U of G'. Say $U = C$ II C'. Now by Lemma 2 in [13], the abstract subgroup H generated by A' and B' is the free product with amalgamation $H = A' *_{C} B'$. Note $(U: C) = \infty$, since U is open in G' and $(G': C) \ge (H:C) \ge \infty$. Therefore, $C' \ne 1$, and since $C \triangleright U$, we have that C' normalizes C. However, by Th. 2 in [6], the only elements **of U normalizing C are those of C. This contradiction implies the result. •**

CONJECTURE 5.2. The only finitely generated M. Hall pro-p groups indecomposable with respect to free pro-p products are either finite p-groups or \mathbb{Z}_p .

CONJECTURE 5.3. Theorem 4.5 is valid even if the free factors are not necessarily finitely generated.

ACKNOWLEDGEMENT

I wish to thank the referee for improving the statement and the proof of Proposition 3.3, and for his (her) suggestions.

REFERENCES

1. A. M. Brunner and R. G. Burns, *Groups in which every finitely generated subgroup is almost a free factor,* Can. J. Math. 31 (1979), 1329-1338.

2. R. G. Burns, *On finitely generated subgroups of free products*, J. Aust. Math. Soc. 12 (1971), 358-364.

3. M. D. Fried and M. Jarden, *Field Arithmetic,* Springer-Verlag, Berlin, 1986.

4. M. Hall, *Coset representations in free groups,* Trans. Am. Math. Soc. 67 (1949), 421-432.

5. D. Haran, *On closed subgroups of free products of profinite groups,* J. London Math. Soc. (3) 55 (1987), 266-298.

6. W. Herfort and L. Ribes, *Torsion elements and centralizers in free products of profinite groups,* J. Reine Angew. Math. 358 (1985), 155-161.

7. W. Herfort and L. Ribes, *Subgroups of free pro-p products,* Math. Proc. Camb. Phil. Soc. **101** (1987), 197-206.

8. W. Herfort and L. Ribes, *Frobenius subgroups of free products of prosolvable groups,* Monatsh. Math. 108 (1989), 165-182.

9. A. Lubotzky, *Combinatorial group theory for pro-p groups,* J. Pure Appl. Algebra 12 (1982), 311-325.

10. O. V. Mel'nikov, *Subgroups and homology of free products of profinite groups,* lzv. Akad. Nauk USSR 52 (1989), 97-120.

11. L. Ribes, *Introduction to profinite groups and Galois cohomology,* Queens Papers in Pure and Appl. Math. #24, Kingston, 1970.

12. L. Ribes, *On amalgamated products of profinite groups*, Math. Z. 123 (1971), 357-364.

13. L. Ribes, Amalgamated products of profinite groups: counterexamples, Proc. Am. Math. Soc. 37 (1973), 413-416.

14. J.-P. Serre, *Cohomologie Galoisienne,* Lecture Notes in Math. 5, Springer-Verlag, Berlin, 1965.